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Abstract-The overall thermal conductivity in a cracked solid with microcracks evolving in the strain 
history is studied in this work. The strain field aggravated by the increase of microcrack density and its 
effect on the overall degradation of thermal conductivity is illustrated. Special emphases are placed on the 
deformation-induced inhomogeneity and the path-dependency resulting from the evolution of microcracks. 
The micro-mechanical model established by Budiansky and O’Connell for the degradation of elastic moduli 
and that established by Tzou for the degradation of overall thermal conductivity are bridged together to 

describe this complicated phenomenon. 

INTRODUCTION 

MICROVOIDS or microcracks in solids are internal 
structures which reduce the effective surface area car- 
rying thermal energy or mechanical load. Degradation 
of the load- or energy-bearing capacities of the solid, 
consequently, depends on the total amount of surface 
reduction when new pores or microcracks are initiated 
or existing defects are enlarged or lengthened in a 
strain history. The total volume occupied by such 
defects in the entire body has been identified to 
describe the group behavior of microcracks [l-3]. For 
geological materials such as rocks or concretes, the 
microcracks or voids result from natural conse- 
quences. They slowly evolve through months or years 
in service and degradations of thermal conductivity 
or elastic moduli at a certain instant can be calculated 
based upon a fixed value of the microcrack density. 
For ceramics, powder metallurgy materials, or solder 
joints in electronic packaging, on the other hand, the 
microcracks resulting from either manufacturing pro- 
cesss or weaker structural integrity may evolve with 
straining in a shorter period of time. The thermally- 
induced strain in solder joints subjecting to fatigue 
cycles spanned in the high range of homologous tem- 
perature [4], for example, promotes evolution of 
microcracks. The microcrack density increasing from 
one cycle to another not only degrades the overall 
moduli and consequently aggravates the shear local- 
ization, but also reduces the overall thermal con- 
ductivity which is responsible for the temperature 
localization. These two failure modes significantly 
reduce the lifetime performance of solder joints and 
consistently damage the electronic devices. For con- 
cretes under either tension or compression, the 
accumulative damage model developed by Tzou and 
Chen [5] provides another example for microcrack 
evolutions. The microcrack density has been found to 
dramatically increase in the post-peak softening 

range. As a result, the process zone spreads widely 
out of the near-tip region and becomes non-local. 

Weakening of the energy-carrying capacity of the 
solid due to microcracks is reflected by degradations 
of the thermal conductivity. For the overall elastic 
moduli in cracked or composite bodies with multiple 
constituents, the famous self-consistent approach 
initiated by Budiansky [l, 21 and Budiansky and 
O’Connell [3] is the first attempt in resolving the 
microcracking damage. The approach was advanced 
later by Horii and Nemat-Nasser [6] to account for 
the anisotropic response due to friction in crack- 
closing. Their effort makes the self-consistent method 
more rigorous and systematic for studying the effects 
of internal cracks. The lumped formulation employ- 
ing the self-consistent concept is also extended to 
study the overall thermal conductivity in cracked 
solids [7,8]. The differential formulation reflecting the 
refined structure of microcracks was accomplished by 
Tzou [9, lo] which isolates the microcracking effect in 
an added tensor from the overall thermal conductivity 
tensor. A thorough comparison with the existing 
models [1, 11, 121 and experimental results [13,14] is 
made to validate the model in general. The central 
quantity in the model is the temperature distribution 
around the crack (or pore) surfaces. When extended 
to a more complicated environment, dependency of 
the overall thermal conductivity on the Biot number 
simply cannot be described by the other models. It 
has been shown that when energy exchange between 
the matrix material and the internal cavities takes 
place, the overall thermal conductivity is a nonlinear 
function of the microcrack density. 

Microcracks may evolve when a solid is strained. 
As a result, the overall thermal conductivity depend- 
ing on the microcrack density varies in a strain history. 
For degradations of elastic moduli in the strain history 
and the resulting damage of shear locations, the 
research is in the broad area of brittle damage mech- 
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NOMENCLATURE 

averaged radius of microcracks [mm] 
microcrack density parameter 
[dimensionless] 
microcrack damage index 
[dimensionless] 
Young’s modulus [MPa] 
damage parameter [dimensionless] 
bulk modulus IMPa] 
number of activated cracks per unit 
volume. 

Greek letters 

B shape factor of microcracks [dimensionless] 
F u&axial strain (mmmm ‘1 
K thermal conductivity [W m ’ K ‘1 
1 Poisson’s ratio 
CF uniaxial stress [MPa]. 

Subscripts and superscripts 
0 intact values 
\ volumetric quantities. 

anics. It is still an ongoing research area and intensive 
reviews on the development of the theory have been 
frequently made [IS, 161. In companion with the 
degradation of elastic moduh due to microcraeking, 
degradation of thermal conductivity may significantly 
increase the temperature established in the solid. This 
phenomenon becomes pronounced in solids con- 
taming localized defects such as a macrocrack tip or 
a notch. Due to large volumetric strain developed in 
the neighborhood of a macroscopic crack tip, for 
example, the number density of microcracks dra- 
matically increases in the strain history. The resulting 
degradation of thermal conductivity in this local area 
prevents heat from dissipating into the surrounding 
media and localization of temperature occurs. Obvi- 
ously, the thermo-mechanical interaetious involved 
in this process may significantly influence the crack 
instability as well as the evolution of the process zone. 

The present paper aims to study the overall thermal 
conductivity in a solid with evolving microcracks. At 
the initial stage of development, an uncoupled ap- 
proach will be adopted which estimates the micro- 
crack damage without incorporating the thermal 
effect. The micro-mechanical model established by 
Budiansky and O’Connell [3] and the microcracking 
damage model established by Tzou and Chen [5] are 
bridged together to depict the evolution of micro- 
cracks in the strain history. The microcrack density 
thus obtained will then be used to estimate the overall 
thermal conductivity according to the self-consistent 
result obtained by Tzou [9, lo]. The one-dimensional 
example is used to illustrate the essence of the model 
which includes the path-dependency of the overall 
thermal conductivity on strains. A general application 
is thenmade for a hollow cylinder subjected to internat 
pressure. The purpose is to obtain the evolution pat- 
tern of the overall thermal conductivity in the strain 
history and illuminate the inhomogeneity induced by 
deformation. It will be shown that the self-consistent 
approach results in an ultimate value of one-half (l/2) 
for the overall thermal conductivity relative to its 

intact value while the load-bearing capacity of the 
solid is totally lost. It shows that the energy-bearing 
capacity degrades at a slower rate than the load-bearing 
capacity in a nonisothermal environment. 

i 

MICROCRACK DAMAGE 

Since the overall thermal conductivity sensitively 
varies with the microcrack density, it is necessary to 
describe the physical mechanisms governing the evol- 
ution of microcracks in a straining body. The stress 
intensity factor. first of all, is not a retiable index fot 
measuring the crack damage when crack sizes are 
small [17, 181. Especially for solids containing hun- 
dreds and thousands of such microcracks, emphasis 
should be piaced on the group behavior rather than 
individual cracks. The microcrack density parameter 
measuring the averaged volume of randomly dis- 
tributed microcracks, 

Cd = PI%‘, (1) 

was used for this purpose 131. In equation (I), C; is 
the microcrack density parameter, N the number of 
cracks per unit volume, and a the average crack length. 
/I is the shape factor depending on the geometry of 
microcracks. For circular cracks, the value of /I is 
one (1). The microcrack density parameter (C,) is 
promoted by either crack-lengthening (a increases) or 
activation of new cracks (N increases). 

(a) Overall elastic motiuli 
Assuming that crack closure effects are negligible 

and the statistical dist~butions of the lengths, locations 
and orientations of the cracks are sufficiently random 
and uncorrelated (which implies that the cracks are 
non-interacting), Budiansky and O’Connell [3] 
derived the overall value for the elastic bulk modulus : 

with K being the bulk modulus and v Poisson’s ratio. 
The subscript ‘0’ in this paper denotes the intact value. 
In relation to the degraded value of Poisson’s ratio, 
the crack density parameter is further expressed as 

C, = 42 (VII-4(2-r) 
16 (1 -VZ,r_loV,--v~~>r. 

(3) 

Note that under the assumptions made in the self- 
consistent approach, the cracked body characterized 
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by (2) and (3) behaves isotropically and homo- 
geneously in the large. The degraded Poisson ratio, 
refer to equation (3), is a function of the crack density 
parameter. The degraded bulk modulus depicted by 
equation (2), consequently, varies with the crack den- 
sity parameter in a nonlinear fashion. 

(b) Overall thermal conductivity 
The overall thermal conductivity has been derived 

by Tzou [9, lo] based on the same self-consistent 
concept, 

K 
-= l-$C, 
KO 

(4) 

with K being the thermal conductivity. The coefficient 
in front of C, depends on the shape of defects. For 
microvoids with a spherical geometry, the coefficient 
S/9 in equation (4) is replaced by 2a/3. Larger degra- 
dation results for spherical pores than penny-shaped 
cracks because spherical pores, once activated, reduce 
more surface area carrying the thermal energy. In 
comparison with the corresponding expression for the 
elastic bulk modulus, equation (2), the constant 
coefficient (8/9) is much simpler due to the absence of 
lateral effect (parallel to Poisson’s effect in solid defor- 
mation) in heat conduction. Most importantly, the 
overall thermal conductivity varies linearly with the 
crack density parameter when the lateral effect dis- 
appears. This is only valid, however, for insulated 
crack surfaces. In the presence of internal heat transfer 
across the surfaces of defects, the overall thermal con- 
ductivity becomes a nonlinear function of the crack 
density parameter. It involves the Biot number for a 
convective-mode heat transfer and the ratio of ther- 
mal conductivities of the primary to the secondary 
phase constituents for a conduction-mode heat 
transfer. 

(c) Deformation mechanisms 
The crack density parameter C, appears as an inde- 

pendent variable in equations (2)-(4). For a rigid solid 
with a fixed structure of microcracks, C, has a specific 
value and these equations can be used to calculate the 
overall values of K, v, and K. For a deformable body 
in which microcrack density evolves in straining, on 
the other hand, the relationship between microcrack 
density and strain must be established to describe the 
degradation process. The physical mechanism is thus 
controlled by strain in a loading history. From a 
physical point of view, the volume change of a 
material continuum (at least as a first-order approxi- 
mation) is governed by the volumetric strain. The 
volumetric strain is defined as the sum of three prin- 

cipal strain components which reduces to the uni- 
axial strain in simple tension or compression. Recog- 
nizing that volume expansion is the major cause of 
microcrack activations, Tzou and Chen [5] extended 
this concept to their cumulative damage model. The 
index D measuring the microcrack damage, 

D,‘6 l-v2 

( J 
~ G, 

9 l-2v 

was introduced for this purpose. In terms of D, equa- 
tion (2) becomes 

K 
-=1-D. 
KO 

In the absence of microcracks, the crack density par- 
ameter C, = 0 which results in D = 0 from equation 
(5). The overall bulk modulus thus reduces to its intact 
value acc’ording to equation (6). In severe damage 
situations with D being one (l), K = 0 and the load- 
bearing capacity in the local area is totally lost. At 
specific values of C, and vo, equation (3) provides a 
cubic equation to be solved for v. A first-order Taylor 
series expansion on v/v0 applied to (3), however, gives 

V 10 

v,=9f2v ( > 
I-;Cd 

For typical values of v ranging from 0 to 0.5 (for an 
incompressible medium) in the damage process, this 
ratio can be further approximated by 

VNVO ( > I-+ (8) 

Numerically, as also demonstrated by a direct com- 
parison of (3) and (8) for various values of v [19], 
the maximum deviation between equations (3) (exact) 
and (7) (approximate) is 6.61%. The physical mech- 
anisms behind equation (3), however, are better rep- 
resented by equation (8). When the crack density par- 
ameter C, reaches a limit value of 9/16 (0.5652), v 
degrades to its final value of zero (0). This is an exact 
result should equation (3) bc used. From equation 
(5), moreover, the damage D increases to its ultimate 
value of one (1) and the overall bulk modulus K 
reduces to zero (0) according to equation (6). In other 
words, total loss of load-carrying capacity occurs at 
C, = 9/16. This critical instant does not have to wait 
until microcracks fill the entire solid. A detailed analy- 
sis to equation (5) further supports this observation. 
Solving equation (5) for v, we obtain 

v= 
9D-&SlD’-144DC,+256C,2), (9) 

16C, 

For D = 1 and C, = 9/16, clearly, v reduces to zero 
and the critical condition is thus retrieved. Equations 
(8) and (9) can be solved simultaneously for C, and v 
in terms of v. and D. Equating (8) to (9), we arriye at 
a cubic equation governing C, : 

+ 
16(v;+2Dvo- 1) 

9 1 C,+D(l-2v,) = 0. (10) 

Again, the condition of D = 1 when C, = 9116 is 
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0.6 cracks to the volumetric strain and the critical stress 

0.5 
intensity factor, they obtained 

D = kc:‘- h (II) 

where c, is the volumetric strain measuring the volume 
change of a material continuum in small defor- 
mations. k and m are the damage parameters dcter- 
mined from the peak-state of softening damage in the 
uniaxial stress-strain curve. From the experimental 

curves of concretes, their values were found as 
0.0 0.2 0.4 0.6 0.8 1 .o 

Damage D 
x = I.05311 x lob. r77 = 7.889 17 under tension, 

FIG. I. Variations of the microcrack density parameter (C,,) k = I.51 523 x IO’. m = 9.52216 under compression. 
with the intact Poisson’s ratio (vO) and the microcrack dam- 

age measure (D). (12) 

Since tension and compression possess different values 

reflected. In a deformation history with D being deter- 
mined, therefore, the crack density parameter (from 
(10)) and the degraded Poisson’s ratio (from (8) or 
(9)) can be obtained altogether. Figures 1 and 2 show 
the variations of C, and v with vu and D. Although 
analytical solutions for the cubic equation (10) exist, 
the secant method is used for these figures. The pro- 
cedure is straightforward since the root for C, is 
between zero and 9/l 6 for all cases. As shown in Fig. 
I, the crack density parameter increases to its ultimate 
value of 9/16 when the damage increases to one. At a 
certain value of II developed in the strain history, 
more microcracks (larger value of C,,) are activated 
in the solid with a smaller value of the intact Poisson’s 
ratio (v”). Figure 2 shows the degradation of Poisson’s 
ratio when the microcrack damage increases. For vari- 
ous values of v,,, the overall Poisson’s ratio degrades 

to zero when severe damage (D = I) occurs. 
Phenomenologically, the microcrack density (C,) 

and hence the microcrack damage (D) increase when 
the volumetric strain in a material continuum 
increases. This behavior has been described in the 
micro-mechanical models in continuum damage 
mechanics. The model established by Tzou and Chen 

[5] provides a typical example. Employing the Weibull 
distribution for the number of active flaws per unit 
volume and relating the averaged radius of the circular 

0.0 0.2 0.4 0.6 0.8 1 .o 
Damage D 

FIG. 2. Variations of the degraded Poisson’s ratio (v) with 
the intact Poisson’s ratio (v,) and the microcrack damage 

measure (D). 

of k and m, the damage model is capable of dis- 
tinguishing tensile and compressive damage. In a uni- 
axial response, the volumetric strain reduces to the 
uniaxial strain. The uniaxial stress-strain curve is thus 

described by 

0 = E,( 1 - D)E = E,(i:-kt:“’ ‘) (13) 

where E, is the intact value of Young’s modulus. For 
the same concrete specimen, E, = 21390 MPa under 
tension and 20 576 MPa under compression. The 
intact Poisson’s ratio, however, is not sensitive to the 
loading condition and remains at 0.24 for both cases. 
The post-peak softening behavior represented by 
equation (I 3) is shown by Fig. 3 for both tension and 
compression. In companion with the strain increase. 
microcracks activate in the post-peak region and the 
stress already established in the medium relaxes due 
to formation of new crack surfaces. 

Note that for describing the overall degradation of 
thermal conductivity in a strain history, the consti- 
tutive equation (13) must be accommodated to 
address the effect of microcracking in a consistent 
fashion. Traditional approaches employing elasticity 
or plasticity theory for describing deformations, 
therefore, are limited to the physical domain in which 

8- 

Tension 

d 

I 
-0.6 -0.3 0’ 0.05 0.10 

id 

e, x 1 O-2 mm/mm 

- -35 

Compression 

- -70 

FIG. 3. The post-peak softening damage of a concrete speci- 
men under tension and compression. 
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E, I O-4 mm/mm 

Tension 

1 
1 

1 
7 

FIG. 4. Degradation of the overall thermal conductivity in 
the strain history. The concrete specimen under tension, 

k = 1.05311 x lo6 and m = 7.88917. 

microcracks are not activated. Consequently, the 
microcrack density cannot be high. On the contrary, 
the present model accommodates degradations of the 
overall elastic mod&i as an entirety when microcrack 
density increases. As a result, the model is expected 
to cover a wider range of microcrack density evolving 
the strain history. 

OVERALL THERMAL CONDUCTIVITY 

The load-bearing capacity of the continuum volume 

will be totally lost when C, reaches a value of 9/16. 
Both the bulk modulus and Poisson ratio degrade to 
zero at this critical instant. The conductivity ratio 
IC,$,, on the other hand, degrades to an ultimate ialue 
of one-half (l/2) according to equation (4). The con- 
tinuum elements with ‘saturated’ microcracks (when 
C, = 9116) can still conduct heat but not as efficiently. 
Clearly, the Ioad-bea~ng capacity of a material vol- 
ume due to microcracking degrades at a fuss rate 
than the energy-~a~ng capacity. 

(a) One-dimensional response 
So far, equations (4) relating the overall thermal 

conductivity to the microcrack density parameter, 
(10) relating the microcrack density parameter to the 
microcrack damage, and (1 I) relating the microcrack 
damage to the volumetric strain are available for use. 
Combinations of equations (4), (10) and (1 l), there- 
fore, gives us an expression for the overall thermal 
conductivity evolving with the micr~racks in the 
strain history : 

K 
G = 1 - $&L)(E) ; v,,, k, m). (14) 

Different values of k and m should be used when the 
loading switches from tension to compression. For 
various values of vO, Figs. 4 and 5 show the variations 

t The overall compression may result in crack-closing dur- 
ing deformations [4]. The friction between crack surfaces 
renders an anisotropic elastic moduli tensor which is not 
accounted for in equation (14). 

Comoression 

0 Y 0.8 

‘i; 
0.7 

E, 1O-3 mm/mm 

FIG. 5. Degradation of the overall thermal conductivity in 
the strain history. The concrete specimen under compression, 

k = 1.51523 x 10’ and m = 9.52216. 

of the overall thermal conductivity in the strain 
history. When the strain increases to approximately 
6.48 x 10ew4 mm mm- ’ in tension and 4.75 x IO- 3 mm 
mm- ’ in compression, the overall thermal con- 
ductivity ratio degrades to its ultimate value of 0.5. 
With regard to the ener~-~a~ng capacity, clearly, 
the specimen has stronger resistance to compression. 
This behavior is consistent with that in deformation 
because microcracks are less activated under overall 
compression than those under tension.? Degradation 
of the overall thermal conductivity can also be pre- 
sented in terms of the stress according to equation 
(12). The results are displayed in Figs. 6 (for tension) 
and 7 (for compression). Both figures start from the 
right where the overall thermal conductivity degrades 
from its intact value. It is clear that most degradations 
occur in the post-peak region after softening. The 
analysis based on the elastic response without in- 
co~orati~g microcrack damage, therefore, is lim- 
ited to the domain prior to the softening point. It 
can only predict, approximately, 10% of the degrad- 
ation in tension (K/K, N 0.9) and 5% in compression 
(QQ = 0.95). Any degradation beyond this threshold 
must accommodate the softening damage in the mech- 
anical response for the sake of consistency. 

0.0 - 
0.5 0.6 0.7 0.8 0.9 1.0 

K/Ko 

FIG. 6. Degradation of the overall thermal conductivity 
in the stress history. The concrete specimen under tension, 

k = I.05311 x 106andm = 7.88917. 
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E 
6 

40 50~/1. 30 

20 

10 

0.5 0.6 0.7 0.8 0.9 1 .O 
KlKo 

FIG. 7. Degradation of the overall thermal conductivity in 
the stress history. The concrete specimen under compresslon. 

k = 1.51523 x IO’ and rn = 9.52216. 

(b) Internali!~ pwssurized cylinder -d&rmurion 

induced inhomogeneit~ 

When load is applied to a structure, strain levels 
established at different locations depend on the way 
in which load is transmitted into the interior. For most 
problems with practical interest, load transmission 
is nonhomogeneous and the strain field thus estab- 
lished is consequently nonhomogeneous. The non- 
homogeneous strains induce a nonhomogeneous dis- 
tribution of microcracks which, in turn, generate a 

nonhomogeneous pattern for the degradation of over- 
all thermal conductivity. As a quantitative example 
for illustrating this phenomenon, we consider an 
internally pressurized cylinder fixed along its outer 
surface as shown in Fig. 8. When the internal pressure 
P gradually increases, we study the evolution pattern 

of the overall thermal conductivity in the cylinder. 
The overall thermal conductivity represented by equa- 
tion (4) has been implemented in the finite element 
algorithm developed by Tzou and Chen [5] to study 
the degradation load- and energy-bearing capacities 
as an entirety. The finite element approach employs 

an incremental algorithm to update the microcrack 
damage, and hence the overall thermal conductivity 
and elastic moduli. in the strain history. It employs 
nonlinear, isoparametric elements allowing for cubical- 
ly-varying displacements inside each element. WC use 

a total of 16 Gaussian points of integration in every 
element to capture the variation of the microcrack 
density inside the clement. The required numerical 
accuracy can thus be achieved by the USC of the least 
number of elements. The local and global Euclidean 
Error norms. respectively. are limited to IO ‘and 10 ‘. 
Numerical iterations are proceeded until these thres- 
hold values arc obtained. Eight elements are used to 
discrctize the first-quadrant segment presenting axis- 

symmetry. Other details and results for the nonlinear 
stress analysis are provided in ref. [5] and will not bc 
repeated here. 

Based on the strain field thus calculated. the way to 

calculate the overall thermal conductivity remains the 
same. When the applied internal pressure increases 
from zero to 560 h@d, Fig. 9 shows the progressive 
degradation of the overall thermal conductivity in the 
cylinder at three intermediate stages with P = 500, 530, 
and 560 MPa. The case with P = 500 MPa is the onset 

for microcrack activation below which only a minor 
change in the thermal conductivity is observed. Diffcr- 
cnt symbols on the curves represent typical nodal 
values obtained from the finite element analysis. The 
overall thermal conductivity. as expected, decreases 
when the internal pressure increases. At a given value 
of P. the inner surface subjecting to load and the outer 
surface being geometrically fixed possess larger volu- 
metric strains. As a result, the microcrack damage and 
hence the degradation of overall thermal conductivit) 
arc thereby more pronounced. Note also that the ther- 
mal conductivity degrades to half of its intact value 
at the loaded inner surface when I’ reaches 560 MPa. 
This is the ultimate value of K/f<,, (I ;‘7) and all the 
elastic moduli reduce to zero since (‘., = ‘):‘16. 

fixed at T = a deformation-induced 

geometrical one-quarter segment 

configuration with axis-symmetry 

(a) @I 

FIG. 8. (a) An internally pressurized cylinder fixed at the outer surface with a = 5 m and (b) one-quarter 
segment reflecting the axis-symmetry. 
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0.8 
u” 
‘; 0.7 

P = 560 MPa 

0.2 0.4 0.5 0.6 0.8 0.9 1.0 

r/a 

FIG. 9. Nonhomogeneous distributions of the overall thermal 
conductivity in the pressurized cylinder. Evolution patterns 

of K/IC,, at P = 500,530 and 560 MPa. 

(c) Path dependency 
The path dependency is a direct consequence of 

irreversibility in microcracking. It means that the 
microcrack density, and hence the overall thermal con- 
ductivity, depend not only on the load exerted on the 
cracked medium but also on the way in which such a 
load is applied. We shall illustrate this special feature 
by considering, respectively, a tensile and a compressive 
strain-loop imposed on a cracked specimen. An 
incremental analysis is needed for studying the path- 
dependency in a strain history. To this end, equations 
(4), (10) and (11) are expressed in their incremental 
forms : 

AC, = 
27(9 + 32C,v,)AD 

16(27-54Dv,+27v;- 192C,v;+256C,2v;) 

(15) 

AD = k(m-6)~“-‘(A~) (16) 

AK 
-_= 
KO 

- jACd. 

The onset of microcrack damage determines the initial 
strain a. The microcrack density parameter C, and 
damage D at this strain level are then calculated, re- 
spectively, by equations (10) and (11). Based on 
these initial values, equations (lS)-(17) are used to 
calculate the incremental changes of AD, AC,, 
and AK/K~ in response to the incremental strain BE 
imposed on the cracked specimen. The loading path 
determines the strain increment AE. For a series of A&;, 
i= 1,2,. . , N, decomposing a specified path of load- 
ing, the incremental changes calculated from (lS)- 
(17) are constantly cumulated to the previous values. 
Mathematically, 

$1 = & 1) + (Ac)(‘), DC” = DC’- 1) + (AD)@?, 

and 

Cz, = C$- 1) + (AC,)@ 

p)(i) = pp-‘)+ (%r, (18) 

1.0 

0.9 

u” 
‘;; 

0.8 

0. 

Compression loop 

1 

-2 -1 
a, 1 O-3 mm/mm 

FIG. 10. Degradation history and permanent set ofthe overall 
thermal conductivity in a compression loop of strain: & 
-3.0x 10-3-0mmmm-‘, v0 = 0.24, k = 1.51523x lOSand 

m = 9.52216. 

with i being the number of increments in the loading 
history. To demonstrate this procedure which is 
necessary for numerical analysis, a cracked specimen 
subjected to a compression loop is considered. The 
intact Poisson’s ratio is taken as 0.24 for unconfined 
concretes. The specimen is first strain-loaded to 
- 3 x lo- 3 mm mm- ’ and then unloaded back to the 
origin. Since the entire process occurs in compression, 
the values of k and m under compression in equation 
(11) are used. Although the net strain at the final state 
is zero in this loop, the microcrack damage, and hence 
the overall thermal conductivity develops a permanent 
set. The result is shown by Fig. 10. Two hundred (200) 
increments are used for decomposing each strain- 
path. In compression from zero to -3 x 10e3 mm 
mm- ‘, the overall thermal conductivity gradually 
degrades to approximately 90% of its intact value 
(K/IC~ N 0.9). In the reversal path from - 3 x 10m3 mm 
mn- ’ to zero, however, the microcrack density con- 
tinuously evolves and the overall thermal conductivity 
degrades all the way to 78% of its intact value 
(J&, N 0.78). Also, larger degradation for rc/rco is 
developed in the reversal path. Figure 11 shows the 
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FIG. 11. Degradation history and permanent set of the overall 
thermal conductivity in a tension loop of strain: t& 
3.5x 1O-4-O mm mm-‘, v0 = 0.24, k = 1.05311 x lo6 and 

m = 7.88917. 
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result under tension. The cracked specimen in this 
case is loaded to 3.5 x 10d4 mm mm-. ’ and then 
unloaded back to the origin. The values of k and m 
under tension are used instead since the entire process 
occurs in tension. Again, the net strain imposed on 
the specimen is zero in this tension loop. Similar 
behavior is observed but a larger permanent set, 
namely ti/~(, = 0.56, is developed at the end of the 
cycle. As explained in Figs. 4 and 5, this is due to 
weaker resistance to microcracking under tensile con- 
ditions. 

CONCLUSION 

Degradation of the overall thermal conductivity 
induced by microcracks has been analyzed in this 
paper. The micro-mechanical model established by 
Budiansky and O’Connell (for the elastic moduli) has 
been bridged to that established by Tzou (for the 
overall thermal conductivity) via the damage measure 

which evolves in the strain history. When strain is 
involved in the degradation process of the overall 
thermal conductivity, the effect of microcracking on 
the mechanical behavior has been accommodated for 
the sake of consistency. As a result. larger degradation 
has been found in the post-peak softening regime of 
the stress-strain curve. While deformation-induced 
material inhomogeneity for the overall thermal con- 
ductivity is demonstrated by a thick-wall cylinder sub- 
jected to an internal pressure, the path-dependency is 
demonstrated by a cracked specimen under tension- 
and compression-loops. The thermo-mechanical 
properties of an unconfined concrete specimen have 
been used to demonstrate this special behavior. 

It has been found that as the crack density par- 
ameter reaches its ultimate value of 9/16, the load- 
bearing capacity of the continuum volume is totally 
lost as reflected by zero values of all the elastic moduli. 
The overall thermal conductivity, however, still has a 
residual value being one-half of its intact value at this 
critical instant. Physically, we have shown that the 

energy-bearing capacity degrades at a slower rate than 
the load-bearing capacity when microcrack damage 
evolves in the strain history. This is understood 
because heat conduction in solids relies not only on 
the effective surface area carrying the thermal energy, 
but also on the electron--phonon collisions in the pro- 
cess. Also, different degradation patterns of the over- 
all thermal conductivity occur under tension and com- 
pression Tension induces a larger degradation of the 
overall thermal conductivity which is a similar 
behavior to the elastic moduli. 

Dependency on the loading path is a special feature 
for this type of problem. Under a specified final load, 
the. microcrack density and hence the overall thermal 
conductivity may develop different permanent sets 
should the path of loading vary. The strain paths 
considered in Figs. 10 and 1 I are designed for illus- 
trating this important behavior in the simplest 
manner. It provides a fundamental understanding for 

problems in fatigue where both tension and com- 
pression may co-exist in loading cycles. When micro- 
cracks evolve in the strain history, indeed, the dcgra- 
dation history of the overall thermal conductivity 
becomes extemely complicated. The non-local spread- 
ing of the process zone from the surface of an intern- 

ally pressurized cylinder and the path-dependency 
of the overall thermal conductivity, for example. are 
simply direct results of microcrack evolution. They 
are salient features in the present model which cannot 

be depicted by traditional approaches assuming elas- 
ticity for deformation. 

Lastly. the ‘overall’ concept depends on the physical 
domain in averaging. For cracked solids with a fixed 
microcrack density, the overall thermal conductivity 
may be taken over the entire body. When strain and 
hence the microcrdcks evolve in a strain history, on 
the other hand, the physical domain for the oc~~a/l 
thermal conductivity should be reduced to a sub- 
structural level to reflect the nonhomogeneous dis- 
tributions of microcracks. The example of an intern- 
ally pressurized cylinder given in this paper reflects 
this concept well. 
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